摘要
为解决内河排水动力不足、建设用地困难等问题,结构紧凑、占地面积小的一体化闸门泵受到广泛关注,其中较大口径的一体化泵闸在国内应用时间较短、实例较少。以盐河泵闸工程为背景,采用三维参数化计算模型,进行门叶厚度、板厚度等参数设计优化分析,以及穿墙管、腹板薄弱处的加固分析;同时针对闸门泵振动、防腐等关键问题进行了分析论证。研究得出,门叶厚度不宜增加过大,应同时对区隔较大的面板、腹板结构进行适当加固,以控制共振频域;当闸门宽高比小于0.6且泵外径与闸门宽之比接近0.5时,宜采用12~16 mm范围内的板厚组合;穿墙管加固应横、纵、斜肋同时考虑;通过动态模拟分析,盐河泵闸设计能够避免一体化泵闸发生共振,且有一定的安全余量。
Abstract
By solving the problems such as the shortage of drainage power in inland rivers and the difficulty of construction land, the integrated gate pump with compact structure and small floor area has received much attention. Among them, the integrated gate pump with larger diameter has a short application time and few examples in China. This paper takes the Salt River Pump Gate Project as the background, uses the three-dimensional parametric calculation model, carries on the design optimization analysis of the door blade thickness, the plate thickness and other parameters, and the reinforcement analysis of the weak parts of the wall pipe and web. At the same time, the key problems such as vibration and anticorrosion of the gate pump are analyzed and demonstrated. The results show that the thickness of the door blade should not increase too much, and the panel and web structure with large separation should be properly strengthened at the same time to control the resonance frequency domain. When the ratio of gate width to height is less than 0.6 and the ratio of the pump outer diameter to gate width is close to 0.5, the plate thickness combination in the range of 12~16 mm should be used. Transverse, longitudinal and diagonal ribs should be considered at the same time for wall pipe reinforcement. Through a dynamic simulation analysis, the design of Salt River Pump Gate can avoid the resonance of the integrated pump gate, and has a certain safety margin.
关键词
一体化闸门泵 / 优化设计 / 穿墙管 / 抗振效果 / 防腐
Key words
integrated gate pump / optimal design / wear wall tube / anti-vibration effect / corrosion protection
基金
引用本文
1 一体化泵闸设计及模型
1.1 盐河泵闸工程概况
1.2 计算模型
表1 一体化泵闸模型材料参数列表Tab.1 Material parameter list of integrated pump brake model |
部位 | 弹性模量/ (N·m-2) | 密度/ (kg·m-3) | 泊松比 | 抗拉强度/MPa |
---|---|---|---|---|
门体 | 0.207 | 7 850 | 0.288 | 255 |
泵体 | 0.206 | 1 010 | 0.300 | / |
2 设计参数敏感性分析
2.1 门叶厚度影响分析
2.2 板结构厚度影响分析
2.3 穿墙管加固分析
图6 不同穿墙管加固方案对应振动频率与模态变化规律曲线图Fig.6 Curve of vibration frequency and modal change law corresponding to different wall pipe reinforcement schemes |
2.4 腹板结构加固分析
2.4.1 边梁腹板结构加固
图8 不同边梁腹板加固方案对应振动频率与模态变化规律曲线图Fig.8 Curve of vibration frequency and modal variation law corresponding to different side beam web reinforcement schemes |
表2 不同边梁腹板加固方案产生共振时对应最大振幅列表Tab.2 List of the maximum amplitudes corresponding to theresonance generated by different side beam web reinforcement schemes |
方案 | 最大振幅/mm | ||
---|---|---|---|
5阶模态 | 6阶模态 | 7阶模态 | |
无肋 | 0.823 | 1.745 | 0.691 |
单肋 | 0.686 | 0.510 | 0.153 |
双肋 | 0.067 | 0.145 | 0.245 |
2.4.2 主梁腹板结构加固
表3 不同主梁腹板加固方案产生共振时对应最大振幅列表Tab.3 List of the maximum amplitudes corresponding to theresonance generated by different main beam web reinforcement schemes |
方案 | 最大振幅/mm | |
---|---|---|
10阶模态 | 11阶模态 | |
无肋 | 0.471 | 0.999 |
单侧角肋 | 0.431 | 1.014 |
双侧角肋 | 0.401 | 0.983 |
单侧通长肋 | 0.132 | 0.165 |
双侧通长肋 | 0.128 | 0.165 |
3 一体化泵闸抗振效果分析
表 4 一体化泵闸特征频率模态成果对比表Tab.4 Comparison table of characteristic frequency modal results of integrated pump gate |
特征频率模态 | 振型频率/Hz | |||||
---|---|---|---|---|---|---|
一阶 | 二阶 | 三阶 | 四阶 | 五阶 | 六阶 | |
闸门泵自振频率 | 4.31 | 13.99 | 16.63 | 62.91 | 122.12 | 137.38 |
闸门泵运行时(固液耦合)——强迫振动频率 | 11.65 | 24.38 | 43.2 | 90.98 | 95.17 | 103.58 |
绝对误差 | 7.34 | 10.39 | 26.57 | 28.07 | 26.95 | 30.80 |
相对误差/% | 170.3 | 74.3 | 159.8 | 44.6 | 22.1 | 24.6 |
4 一体化泵闸防腐性能分析
4.1 主泵防腐蚀措施
4.2 钢闸门及埋件防腐蚀措施
5 结 语
1 |
徐振东,杜丽惠,才君眉. 平面闸门流固耦合自振特性研究[J].水力发电,2001(4):39-43+67.
|
2 |
姚磊.浅谈智能一体化闸门在大型灌区中的应用[J].农业开发与装备,2022(7):114-115.
|
3 |
武慧芳,陆立国,鲍子云,等.宁夏测控一体化闸门应用技术标准研究[J].人民黄河,2022,44(1):116-119+123.
|
4 |
戴林军,郝晓伟,陈胜.一体化泵闸技术在杭嘉湖圩区中的应用研究[J].浙江水利科技,2022,50(4):94-96+102.
|
5 |
钟兴,夏雪莲.双向一体化闸门泵的设计与应用[J].陕西水利,2022(1):152-155.
|
6 |
陈伟. 一体化泵闸水力优化数值模拟研究[D]. 江苏扬州:扬州大学,2021.
|
7 |
李明玉.一体化泵闸的设计及技术要点分析[J].机电信息,2020(29):126-127.
|
8 |
侍贤瑞,严根华,董家,等.立式一体化泵闸安全性研究及结构优化[J].振动·测试与诊断,2021,41(1):176-181+207.
|
9 |
宋建大.一体化泵闸在福州内河水系治理中的应用[J].福建建筑,2018(7):140-142.
|
10 |
温汉昌.模型试验对水利工程泵闸结构的影响与改进优化[J].内蒙古水利,2021(10):41-42.
|
11 |
付本国,张颖军.船舶消防疏水一体化泵组设计及试验研究[J].机电工程技术,2020,49(12):111-113+137.
|
12 |
陆宇杰.城市泵闸建设管理与河道水环境改善分析[J].工程建设与设计,2021(22):89-91.
|